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The variational principles of mechanics were formulated during the period 
of their establishment as requirements for certain functional& defined 
by integrals, to attain a minimum or a maximum. 

The question of the character of the extremum of these integrals or 
even regarding its existence is non-essential for the deduction of equa- 
tions of motion of mechanical systems, which is carried out by means of 
equating to zero the first variation of the functional. It is therefore 
not surprising that together with real variational principles of 
mechanics, such as Hamilton’s principle for conservative systems with 
holonomic constraints, there were established also integral principles 
formulated with the aid of integrals containing expressions with vari- 
ations, but which did not, because of their structure, lead to a problem 
of the calculus of variations; an example of this type is the principle 
of Hamilton-Ostrogradskii for non-conservative systems. 

As a result. the question of the character of the extremum in real 
variational principles became secondary and the establishment of the fact 
that in the principles of Hamilton-Ostrogradskii and Yaupertuis one 
deals with a minimum for only sufficiently small intervals of time, did 
not have any influence on the basic practical applications of variational 
principles. 

At the present time the corresponding terms belonging to the theory 
of kinetic foci [ 1 1 are almost never mentioned either in the educational 
or in the scientific literature of mechanics. 

One can however indicate problems in which the use of minimum proper- 
ties of action according to Hamilton, without regard to results of the 
theory of kinetic foci, leads to erroneous interpretations. 
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As an example 
vibrations which 
eigenfunctions. 

one can mention certain problems of the theory of 
is reducible to the determination of eigenvalues and 

In Book [2 1 and in Paper [3 1 there Is a natural attempt to establish 
extremua properties for frequencies and mode shapes in problems of 
vibrations of mechanical systems on the basis of extremum properties of 
action as defined by Hamilton. 

The neglect of the theory of kinetic foci led Biezeno and Grammel 121 
to the necessity of distorting the formulation of the principle (lntro- 
duction of L = II -T instead of L = - II). while Poschl [ 3 1 was led to 
contradictions in his discussion (replacement of a minimum by a maximum) 
which obtained after he himself had corrected the Indicated error [ 4 1. 

We investigate below the question of the possibility of using vari- 
ational and integral principles to determine frequencies and mode shapes 
in vibrating elastic systems and show that the principle of Hamilton- 
Ostrogradskii. in changed formulation, makes it possible to reduce the 
problem to that of investigating the stationary values of a certain 
functional without, however, allowing us to draw any conclusion regard- 
ing the character of its extremua. 

This latter information should be obtained on the basis of a separate 
studs which is not connected with variational and Integral principles of 
mechanics. 

1. Let us consider a material system subjv+cted to conservative forces 
(it is assumed that the constraints are stationary and holonomic). let 
qs and p, designate the generalized coordinates and momenta respectively; 
H is Hamilton’s function expressed through these variables. In passing 
to an infinitely close motion in which the coordinates and momenta will 

be qS + x8 snd P, + us, its increment AH is equal to 
_ 

n 

AH=6H+6*H+...= 

+ Q (Xl, . . ., xn, Ul, . . .( un) + . . . (1.1) 
Here Cl indicates the homogeneous quadratic foxm 

;n = -+ +j i (a~ x&k + 2 gk x&k + Sk usuk) 
SE1 k=1 s S * 

(12) 

‘Die quadratic form entering into this system 

6=T’ = _!_. 
2 ~l~l~ku.., s 

(l-3) 

is conjugate to the quadratic form 
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. . 

x.sxk U-4) 

where T is the kinetic energy of the system. Therefore, the form (1.3) 
is positive definite. The system of linear equations in variations for 
the canonical system of equations of motion 

. C?H 
Qs’apsv 

;II_aH 
a% 

(s=l,...,n) (i.5) 

may also be written in canonical form: 

n (s=l,. . . ,n) (1.6) 

If it is assumed that Cauchy's integral is known for the system (1.5) 

Qs = QS (t - 4J, al,. * -,4l,p1,* **P pn)v P8 =Ps(t-&9al, - - .,CCn, PI,. . -, pn) (1.7) 

where ai and & are the initial values of the coordinates and the momenta, 
then the functions of time 

E*(m) = 2, q,(m) = ._% 
m afb 9 

Cam = 2, 
m 

&m = a7 m w-9 
(s,m=l,2 ,..., n) 

give, as is known, a system of particular solutions of the variational 
equations (1.6). Iheir linear dependence is a consequence of the equality 

D(::: . *v Qn’ Pl, . . . * pn 

p1 fi>=l . ..a., ,...) n (l-9) 

which expresses the invariance of an element of volume of phase space 
(Liouville's theorem). 

In as much as relations (1.7) represent Cauchy's integral of the 
system (l.S), the following relations are valid 

Es(m) (to) = QS(m) (to) = a,,, $m)(t,) = I;(m) (t,) = 0 S (1.10) 

where 6 s. are Kronecker's symbols. Therefore, Cauchy's integral of the 
system of equations in variations (1.6) will be 

xs 0) = i 1% (to) iP) (l) + Um(&)$m) (l)l 
m=1 

(1.11) 

US @) = i; [Jm@,) tP(q + urn (t")&(m) @)I 
m=1 
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2. The motion of the system defined by the Equations (1.7) shall be 
called its direct path CO; let?, + Spa and p, +6pS designate the 
values of the generalized coordinates and mcmenta on neighboring paths; 
it is assumed that the latter cross the direct path at the instants t0 
and ti; then 

6% (GJ = 0, Qs (Q = 0 (s = 1, . . .) n) (2.3) 

‘Ihe expression of the kinetic potential L on the neighboring path is 
written down in the form 

-H(q, + Q,, p8 + Q,) = L, + u + FL i . . . 
r=1 

(2.2) 
here L is the value of L on the direct path. The second variation a2L, 
if (1. P ) is conserved, will be 

It is known that the first variation 6s of the action according to 
Hamilton 

S= t!Ldt 
s 

(2.4) 

to 

for the neighboring path satisfying Equation (2.1), is equal to zero. 
'lherefore, the second variation S'S, based on (2.3) and (2.1), may be 
written down in the form 

'lhe second variation will vanish if 6qs and 6p, are solutions of the 
system of differential equations 

s& = g, 8pr’-a~ (s=l,...,n) 
‘ II 

(2.6) 

But these are the same differential equations (1.6), which determine 
the motions along direct paths, infinitely close to the direct path CO. 

Therefore, from the first group of conditions (2.1) and Equations (l.ll), 
we have 
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I( 

&7‘ = 2 urn Q,) rim) (t), 
UC=1 

73 

6Ps = 2 urn (to) Wrn) (t) 
WZ=l 

(2.7) 

lbe second group of conditions (2.1) leads to a system of linear 
homogeneous equations for the determination of the constants u,(ta): 

(s= l,...,n) (2.8) 
m=1 

Thus, the determinant (2.9) has to be introduced into the discussion. 

?jl(l) (t) . . . ?P (4 
A(t)= . . . . . . . . . . 

-q 0) (t) . . . vp)(t) II 

From (1.10) it follows that A (t,) = 0. Let such 
found, as t increases, that A(t) is again equal to 

A (G) = 0 

(2.9) 

a value of tl* be 
zero: 

(2.10) 

‘hen the system of equations (2.8) will have a nontrivial solution. 

Tbere exists a bundle of paths, originating from the initial position 
q,(t,,) on the direct path C,, and intersecting the latter at the position 
q,(t,*). Along all these paths, which should be considered as being 
direct, the actions in accordance to Hamilton, calculated within terms 
of the second order inclusive, are equal to each other (since 6*S = 0). 
'Ihe positions qs(t,,) and qs(tl*) represent the corresponding kinetic foci 
of simultaneous paths I1 1. It is assumed that tl* is the first value of 

t> to' which makes the determinant (2.9) equal to zero such that 

A (t)#O (to< 1 <fl') (2.11) 

This condition, together with the condition regarding the positive 
definiteness of the quadratic form (1.3) 

62T’ = fj2T > 0 (2.12) 

guarantees the definiteness of the second variation S*S for an arbitrary 
neighboring path, originating from the initial configuration q,(t,). 
‘Iberefore, under conditions (2.11) and (2.12), Hamilton's action will be 
a minimum along the direct path C,,. To prove this statement 6*L is ex- 
pressed through variations of the generalized coordinates and generalized 
velocities and the following integral is considered 

where tl < tl+. Then it appears to be possible to determine the continu- 
ous functions All(t), under the indicated conditions, in such a way that 
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the quadratic form under the integral sign (2.13) is positive definite. 
For n = 2 this proof is presented in f5 1 and [6 1, while the general 
case is considered in f7 I. 

Along the direct path C,, when condition (2.11) is not satisfied, 
that is when the final configuration q,(tl) is attained after passing of 
the kinetic focus qS(tl*), Hamilton's action will not be a minims since 
it appears to be possible to construct neighboring paths along which the 

action will be smaller II8 1. 

3. The most simple example 
a conservative system about a 
for the kinetic and potential 

is the one concerning small vibrations of 
position of equilibrium. The expressions 
energy in principal coordinates are 

n ?i * 

T = + 2 ik2 = +- 2 pk2, 
k=l k=1 

n = f 2 w*2qk2 
k=l 

where #k is the frequency of principal oscillations; we have 

B, qS = a, cos o,t + -t;- sin o,t, ps = - mS a, sin o,t + & cos o,t (3.1) 
* 

Using (2.9) we obtain 

A (4 = olwz 1 - sinolt sin o,t . . . sin6.M 
. ..a_ (3.2) 

and the closest kinetic focus is reached at the instant of time 

t; = x/on (3.3) 

where on is the largest frequency. lhe location of this focus is deter- 
mined by the generalized coordinates 

*%3 8, qS (tl’) = a,cos o + 0, sin T (S=I,...,n-_:I), qn (h’, = - ccn (3.4) 
n * 

Hmilton's action (2.4) will be a minimum along the direct path (3.1) 
only for 0 < tl < tl*. The interval of time tl* turns out to be equal to 
the half-period of principal oscillation with the largest frequency. 
'lherefore, for continuous elastic systems, the variational principle of 
Hamilton conserves its meaning as an assertion that Hamilton's action is 
stationary, but not that it is a minimum. 

4. Let us consider first the usual scheme regarding the justification 
of the approximate methods of determining the frequencies and mode shapes, 
and free vibrations of elastic systems [2 1, with the aid of the principle 
of Hamilton-Ostrogradskii. 

We limit ourselves to calculation of a system having a finite number 
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of degrees of freedom. 

energy are represented 

n 
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In this case the kinetic energy and the potential 

by quadratic forms with constant coefficients 

n n n 

n = f 2 2 Cskqsqk 
S=I k=l 

(4.1) 

As direct path we prescribe the motion 

qS = C, sin ot (s = 1 , . .,4 (4.2) 

and we shall assume that the coefficients CI are varied while the 

quantity o is assumed to be given. 

Since the variations must vanish at the initial and final instant of 

time t, and tl, we have to select two instants when Sq, = 6C, sin ot 

vanishes, that 

lhen on the 

is, for example, we have to put t, = O-&d tl-= 2n/o. 

basis of the principle of Hamilton-Ostrogradskii 

rnlm 

as= 6 
s 

(T-II)dt=O (4.3) 
0 

In view of the obvious relations 

we find 

wa ml0 

s sin20t dt = 
s 

axtot dt = $ 
0 0 

t&T= +6(oT-u) = 0 (4.4) 

where r and U are quadratic forms obtained from T and Il respectively, by 

changing their arguments 6, and q, to CI. 

Sometimes [3,4 1 it is asserted that on the basis of the principle of 

Hamilton-Qstrogradskii the quantity o*l’-U must have a minimum value. 

In this assertion the following obscurities and contradictions are 

apparent : 1) the quantity o is assumed to be given and is not varied, 

and subsequently deductions are made regarding extreannn properties of o; 

2) the integration with respect to time is carried out without accounting 

for the passage along the direct path of a series of kinetic foci, which 

makes it impossible to conclude the existence of a minimum. 

For systems with distributed constants which possess arbitrarily large 
natural frequencies an analogous discussion as indicated above is even 

less applicable. 

‘lhus, from the principle of Hamilton-atrogradskii, it is impossible 
to obtain a justification of relation (4.4) as a variational principle 
for frequencies and mode shapes. 
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let us show that the integral principle expressed by the relation 

t1 

5 
bLdt=0 (4.5) 

1. 
which results directly from the general equation of dynmnics permits the 
satisfaction of expression (4.4) as a variational principle for eigen- 
values. For fixed values of t0 and tl the form (4.5) is obviously equi- 
valent to the form (4.3). If, however, to and t, depend on the varied 
quhntities then 

ss = i U&t + (L)t=t, 6t, - (L&t, at, (4.6) 
t, 

where St, and at, are variations of the limits of integration. Then (4.5) 
takes on the form C8,9 1 

6s + (Q=t. at; - (L)kl, at1 = 0 (4.7) 
Let us now prescribe a neighboring pathin the form 

q“(t) = C,'sin(o't + a') (4.8) 

such that wz shall assume that the quantities C,', o' and a' are irr- 
finitely close to quantities C,~J and a, respectively, which correspond 
to the direct path 

QS (t) - C,sin(ot + a) (4.9) 

lhen 
(4.10) 

q~‘(t)=q,(t)+6C8sin(ot+a)+6aC,cos(ot+a) +C,t6wcos(ot+a)+... 

Let us now ass- that the limits of integration differ by one period, 
that is, tl = t,,+ 2n/o and 

fit, == St,-~60 (4.11) 

Slbstituting into (4.5) the value 

8L = il (g- 8% + 
and carrying out the integration by parts 

z G3) 
s 

m have (4.12) 

If, as it is in our case, dL/dq* is a periodic function, then to ob- 
tain from (4.12) the equations of motion it is sufficient to satisfy the 
conditions 
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6q, (C,) - 6q* (t”) : -= 0 (.s -zz I , . . .) II) (4.13) 

without letting the variations at the ends be equal to zero separately. 

In view of the periodicity of L the integral principle (4.7) may be 
represented in the form 

cis -; (L), ;t, -$ 601 = 0 (4.14) 

From (4.10) we have 

&qs (ti) = X, sin (Ot, -; a) -: C&x cos (ad, j- a) -j- C,t,Gw cos (d, + a) 

8qs (t,) = 6C, sin (Ot, -j- a) -i- C,6a cos (6.$ -I x) -f C&&r) cos (otO _1- a) 

and since t - 
f 

t0 f 0, we have to assume in order to satisfy the condi- 
tions (4.13 on the neighboring paths 

i 
W1, -_i- z = - ;c 2 (4.15) 

Ihe expression L, after substitution of the values of the generalized 
coordinates (4.9), takes on the form 

L = o”l’ coy2 (wt -j- a) -- U sin2 (wt + a) 

where r and II have the smne values as in Equation (4.4). ‘Ihen 

(4.16) 

and further 

S z ” I,& == -+ ((,,21’ - U) 

(L),,eg60= -u~Go (4.19) 

we may write down relation (4.18) in the form 

(r-G) 601 + + (OW - 6U) = 0 (4.20) 

For a direct path the maximum value of kinetic energy 021’ is equal 
to the maximum value of potential energy U on the basis of the law of 
conservation of energy: 

qr = U (4.21) 

such that relationship (4.20) may be represented in the form 

0w--bu=o (4.22) 
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lherefore, if we introduce into our consideration the quantity 

R+- ws=o_Pr- U (4.23) 

then its variation 6'R, calculated with a fixed o, will be equal to zero: 

6’R = &IT - NJ = 0 (4.24) 

We note that (4.24) is a condition for a stationary value of the 
functional U in the presence of a supplementary requirement r= 1; then 
o2 plays the role of a Lagrange multiplier. Such an approach to the 
functional (4.23), characteristic of problems for determination of eigen- 
values, explains the vanishing of the term with So in the preceding 
calculations. 

Condition (4.24) may be used to obtain equations which permit the 
approximate determination of the frequencies and mode shapes; however, 
to judge the extremum properties of frequencies and mode shapes, supple- 
mentary considerations have to be invoked which are not connected with 
variational and integral principles of mechanics. 
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